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Abstract
The physically admissible solutions of the PT -symmetric Scarf I potential
are identified in the domain of real and complex energies. It is found that
generally there are no admissible complex-energy solutions, and there is one
with real energy. In a limited range of the parameters there are two series
of seemingly admissible solutions both with the real and complex energies
belonging to quasi-parity q = ±; however, the two sets are not PT -orthogonal
in the domain of real energies. The sign of the pseudo-norm of states with real
energy is found to oscillate as (−1)n, in accordance with the example of other
PT -symmetric potentials possessing an infinite number of discrete levels. It
is argued that the spontaneous breakdown of PT -symmetry cannot be defined
for the Scarf I potential. A comparison with some PT -symmetric extensions
of the infinite square well is presented.

PACS numbers: 03.65.Ge, 02.30.Gp, 11.30.Er, 11.30.Qc

1. Introduction

The introduction of PT -symmetric quantum mechanics [1] generated renewed interest in the
analysis of quantum mechanical potentials including their physically relevant solutions, their
energy spectrum and generally their physical and mathematical interpretation. PT -symmetric
Hamiltonians are required to be invariant under the simultaneous action of space (P) and
time (T ) reversal. Most efforts have been devoted to the study of the Schrödinger equation
in one dimension, in which case PT -symmetry means allowing complex potentials obeying
the V ∗(−x) = V (x) relation, i.e. their real and imaginary components are even and odd
functions of the coordinate x, respectively. These manifestly non-Hermitian systems mimic
several features of Hermitian ones. Perhaps the most notable of these is that their energy
spectrum may consist partly or fully of real energy eigenvalues. Further features not expected
from complex potentials were the conservation of the norm and the orthogonality of the states;
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however, for this the conventional inner product 〈ψn|ψl〉 had to be replaced with the PT -inner
product 〈ψn|P|ψl〉.

Another remarkable phenomenon was that tuning some parameter (generally such that
non-Hermiticity increased) resulted in the pairwise merging of real energy eigenvalues and
their re-emergence as complex conjugate pairs. This phenomenon was interpreted as the
spontaneous breakdown of PT -symmetry [1], and it was also found that not all PT -symmetric
potentials can undergo this process.

A major development was the identification of PT -symmetry as a special case of
pseudo-Hermiticity [2], which explained many unusual features of PT -symmetric quantum
mechanics. A Hamiltonian H is said to be η-pseudo-Hermitian, if there exists a linear,
Hermitian, invertible operator η for which it satisfies the relation H † = ηHη−1. This also
implies the redefinition of the inner product as 〈ψn|η|ψl〉. This construction contains both
conventional Hermiticity (η = 1) and PT -symmetry (η = P) as a special case.

A further natural requirement was investigating the relation between PT -symmetric (or,
in general, pseudo-Hermitian) Hamiltonians and their possible Hermitian equivalents [3, 4].
In practical terms this required the modification of the inner product such that the norm is
restored to positive values, allowing for the probabilistic interpretation of the wavefunctions.
This required the introduction of the C charge operator [5]. It is notable that the question of the
physically consistent description of non-Hermitian Hamiltonians in terms of a modified metric
has been discussed well before [6] the introduction of PT -symmetric quantum mechanics.

Although it appears in numerous derivations in an abstract form, the pseudo-norm is
known only for a few concrete cases. It is generally assumed to show oscillatory behaviour
(−1)n with respect to the principal quantum number n, as e.g. for a PT -symmetric square
well [4]. More recently, this pattern was proven exactly [7] for a class of potentials that
are written in a polynomial form of ix (including some anharmonic oscillators and the
archetype of PT -symmetric potentials, V (x) = ix3, for example). However, there is at
least one counter-example, since the pseudo-norm of the PT -symmetric Scarf II potential
is known to deviate from the oscillatory trend [8]. This potential is rather different from
those mentioned above both in its shape (finite depth and infinite range) and energy spectrum
(finite number of discrete levels). It is thus reasonable to investigate the pseudo-norm in the
PT -symmetric Scarf I potential, the trigonometric analogue of the Scarf II potentials: first its
mathematical structure is close to that of the Scarf II potential, and second, its physical nature
resembles the potentials for which the pseudo-norm alternates with n.

In section 2 we discuss the PT -symmetric Scarf I potential in various parameter ranges
corresponding to different types of singularities and identify the admissible solutions for real
and complex energies. We calculate the pseudo-norm for these states and discuss the transition
between the domains with real and complex energies. In section 3 we summarize the results
and give a brief comparison of the PT -symmetric Scarf I potential with some PT -symmetric
extensions of the square-well potential.

2. The PT -symmetric Scarf I potential

The general form of the Scarf I potential is [9, 10]

V (x) =
(

α2 + β2

2
− 1

4

)
1

cos2(x)
+

α2 − β2

2

sin(x)

cos2(x)
, (1)

where x ∈ [−π
2 , π

2

]
. Introducing a new variable

z = 1 − sin x

2
(2)
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the general solutions are given in terms of hypergeometric functions [11] as

ψ(+)(x) ∼ [z(x)]
α
2 + 1

4 [1 − z(x)]
β

2 + 1
4 F

(
α + β + 1

2
− k,

α + β + 1

2
+ k;α + 1; z(x)

)
(3)

and

ψ(−)(x)∼ [z(x)]−
α
2 + 1

4 [1 − z(x)]−
β

2 + 1
4 F

(−α − β + 1

2
− k,

−α − β + 1

2
+ k;−α + 1; z(x)

)
,

(4)

where E = k2. Note that (3) and (4) are interrelated via α, β ↔ −α,−β. We make use of this
finding in identifying the two solutions by the indices ‘+’ and ‘−’. There are also further ways
of writing the two independent solutions due to the rich variety of transformation formulae
concerning the hypergeometric function [11].

When the first or second argument of the hypergeometric functions in (3) or (4) is a non-
positive integer −n, then these functions turn into Jacobi polynomials and formally discrete
energy eigenvalues can be obtained:

E(±)
n =

(
n +

±α + ±β + 1

2

)2

. (5)

However, these solutions are not necessarily physical, as this depends on the boundary
conditions too. A physically acceptable solution should vanish at the boundaries, and
considering the finite domain of definition, this also implies its square integrability. Since
according to (2) x = ±π

2 correspond to z = 1 and z = 0, where the hypergeometric function
takes on the finite value [11], the regularity or singularity of the solutions depends on the
trigonometric prefactors in (3) and (4), and in particular, on α and β. It can be shown that the
behaviour of the two solutions near the boundaries is

lim
x→−π/2

ψ(±)(x) ∼ r±β+ 1
2 (6)

and

lim
x→π/2

ψ(±)(x) ∼ r±α+ 1
2 , (7)

where r = π
2 ± x. The potential itself behaves there as V

(
x → −π

2

) ∼ (
β2 − 1

4

)
r−2, and

V
(
x → π

2

) ∼ (
α2 − 1

4

)
r−2, so it exhibits various types of singularity, depending on α and β.

Before specifying the general formulae for the PT Scarf I potential, we note that the
conventional (Hermitian) Scarf I potential is obtained if α and β are real. In this case ψ(+)(x)

is regular if α, β > − 1
2 holds, while the same condition for ψ(−)(x) is α, β < 1

2 . For α,
β = ± 1

2 (which corresponds to the infinite square well) both solutions are regular, but one
of them takes on the finite value at the boundaries. This means that, in general, only one
of the solutions can be physical; however, in the domain − 1

2 < α, β < 1
2 both solutions

are square integrable and fulfil the boundary conditions ψ
(±π

2

) = 0. This corresponds to
weakly attractive inverse square-type singularities [12], which means that V (r) ∼ γ r−2 with
− 1

4 < γ < 0. In this case the usual procedure is keeping the less singular solution as
the physical one and discarding the other one. This intuitive choice is also supported by a
mathematically more well-founded argument based on the theory of the self-adjoint extension
of operators [12].

In order to make (1)PT -symmetric α and β have to be chosen complex such that β∗ = ±α

[9, 10]. Besides this, the discussion presented up to this point remains valid; however, there
are some further aspects that are specific to PT -symmetry, such as the different definition
of the inner product. One further aspect is that an imaginary coordinate shift can also be
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applied, and in contrast with a possible real coordinate shift for the real problem, it changes
the potential in an essential way [9, 10], e.g. by cancelling its singularities. However, we do
not consider this option here.

2.1. Solutions with real energy: β = α∗

The energy eigenvalues (5) take on real values for β = α∗, i.e. for βR = αR and βI = −αI ,
where α = αR + iαI and β = βR + iβI . The singularity of the potential at the boundaries is
formally the same as in the general case; however, now the coefficients setting the strength of
the singularities are complex: α2

R − α2
I − 1

4 ∓ i2αRαI at x = ±π
2 . Equations (6) and (7) are

also valid; however, it is now αR that determines whether the solutions are regular or singular
at the boundaries. In what follows we shall discuss the cases |αR| > 1

2 , |αR| = 1
2 and |αR| < 1

2
separately, because the two solutions have different pattern of singularities in these domains.
In fact, without loss of generality it is enough to study αR on the half axis (say, for αR � 0),
because the two solutions simply exchange roles if the α ↔ −α (and thus the β ↔ −β)
choice is made.

Let us assume that αR > 1
2 holds, which implies that (3) is regular and (4) is singular.

The physical wavefunctions can then be written in terms of Jacobi polynomials:

ψ(+)
n (x) = D(+)

n (1 − sin x)
α
2 + 1

4 (1 + sin x)
α∗
2 + 1

4 P (α,α∗)
n (sin x). (8)

Based on the properties of the Jacobi polynomials [11] it is easy to show that (8) is an
eigenfunction of the PT operator with eigenvalue (−1)n

(
D(+)

n

)∗/
D(+)

n , i.e. with eigenvalue 1
if the normalization constant is chosen as

D(+)
n = ind(+)

n , d(+)
n ∈ R. (9)

In determining the normalization constant and the pseudo-norm we follow the procedure
presented in [8] for the Scarf II potential. For this we calculate the general PT -inner product
of two wavefunctions:

I
(++)
nl ≡ 〈

ψ(+)
n

∣∣P∣∣ψ(+)
l

〉 =
∫ π/2

−π/2
ψ(+)

n (x)
[
ψ

(+)
l (−x)

]∗
dx. (10)

The first step is rewriting the Jacobi polynomials in terms of explicit sums as [11]

P (α,β)
n (sin x) = 1

2n

n∑
m=0

(
n + α

m

) (
n + β

n − m

)
(−1)n−m(1 − sin x)n−m(1 + sin x)m (11)

remembering that β = α∗ holds. Then we apply the integral formula [13]∫ π/2

−π/2
(1 − sin x)p(1 + sin x)q dx = 2p+q

�
(
p + 1

2

)
�

(
q + 1

2

)
�(p + q + 1)

(12)

term by term in equation (10). This can be done if Re(p), Re(q) > − 1
2 holds, which is always

the case here. Then a double sum formula is obtained:

I
(++)
nl = D(+)

n

[
D

(+)
l

]∗
(−1)n+l2α+α∗+1

×
n∑

m=0

(−1)m
(

n + α

m

) (
n + α∗

n − m

) l∑
i=0

(−1)i
(

l + α∗

i

) (
l + α

l − i

)

×�(α + n − m + i + 1)�(α∗ + l − i + m + 1)

�(α + α∗ + n + l + 2)
(13)
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= D(+)
n

[
D

(+)
l

]∗ sin[(α + α∗)π ]

2 sin(απ) sin(α∗π)
Q

(α,α∗,α,α∗)
nl (14)

= δnl(−1)n
∣∣D(+)

n

∣∣2 2α+α∗+1

α + α∗ + 2n + 1

�(α + n + 1)�(α∗ + n + 1)

n!�(α + α∗ + n + 1)
. (15)

Here (14) follows from a formula appearing in the analogous process applied to the Scarf
II potential [8]. It is remarkable that although in the actual integrations there hyperbolic
functions appear, rather than trigonometric ones, still the summation reduces to a similar
formula evaluated explicitly in (15).

Equation (15) clearly demonstrates the expected PT -orthogonality of the wavefunctions
with n 
= l, and it also gives a closed explicit formula for the pseudo-norm for n = l. The
analysis of the individual terms of (15) shows that the pseudo-norm is real: the reality of most
terms is trivial, while the two gamma functions in the numerator are each other’s complex
conjugate, so their product is also real. Furthermore, it is also seen that due to the assumption
αR > 1

2 the sign of the pseudo-norm I (++)
nn is determined by the (−1)n term, i.e. it oscillates

with n. This behaviour of the pseudo-norm is similar to that observed for other PT -symmetric
potentials possessing infinite number of discrete levels and differs from, e.g., the example of
the Scarf II potential [8], which has finite number of discrete levels. In addition to the (−1)n

factor, in the latter case the sign of the pseudo-norm is also influenced by gamma functions
depending on −n among other parameters, and this leads to deviations from the oscillatory
trend.

The actual expression of the normalization constant, considering also (9), is

D(+)
n = in

(
(2n + 2αR + 1)n!�(n + 2αR + 1)

22αR+1�(n + α + 1)�(n + α∗ + 1)

)1/2

. (16)

It is notable that apart from the in factor this expression can be obtained from the normalization
constant of the real Scarf I case by formally substituting complex values into the real α and β

parameters. It has to be stressed that the Jacobi polynomials, and in particular, the standard
integration formula they satisfy are defined normally for real values of α and β [11].

Let us now turn to the intermediate zone − 1
2 < αR < 1

2 , where both (3) and (4) vanish
at x = ±π

2 , and thus are normalizable. In fact, equations (15) and (16) are valid for ψ(+)
n (x)

in this range too, because the integration formula (12) is applicable up to αR > −1 (which
includes even some irregular, though normalizable solutions in the range − 1

2 > αR > −1).
Actually, it can be shown that the oscillatory behaviour of I (++)

nn persists for αR > − 1
2 too.

This can be proven trivially for n > 0, because all the individual real terms mentioned above
are positive then, while for n = 0 the two terms in the denominator can be combined to yield a
positive expression as (2αR + 1)�(2αR + 1) = �(2αR + 2) > 0, since 2αR + 2 > 1 holds. The
equivalent formulae I (−−)

nn and D(−)
n for the second solution ψ(−)

n (x) can be obtained trivially
by replacing α with −α (and thus αR with −αR).

These results indicate that similar to some other solvable PT -symmetric potentials a
quasi-parity quantum number q = ± could also be defined through qα (and thus qβ) too, at
least in the limited parameter range |αR| < 1

2 . Due to this choice q would appear only in the
energy eigenvalues and the wavefunctions, but obviously, would not influence the potential
function (1) itself. In what follows we investigate this possibility.

Given the two normalizable solutions in this limited range of αR the question whether
they form orthogonal sets arises naturally. Generally there is an indirect proof for this in the
case of PT -symmetric potentials using the formula

(
E(q)

n − [
E

(p)

l

]∗) ∫ b

a

ψ(q)
n (x)

[
ψ

(p)

l (−x)
]∗

dx = 0, (17)
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which is obtained from the Schrödinger equations satisfied by the two wavefunctions and
making use of the PT -symmetry of V (x). Equation (17) indicates that the integral has to
vanish whenever the two energy eigenvalues are different, which is clearly the case if the quasi-
parities q and p are different. However, equation (17) is applicable only if the wavefunctions
and their derivatives vanish at the boundaries x = a and b. This assumption is not valid in
the case of the Scarf I potential, where the equivalent of (17) is

(
E(+)

n − [
E

(−)
l

]∗) ∫ π
2

− π
2

ψ(+)
n (x)

[
ψ

(−)
l (−x)

]∗
dx

=
[
ψ(+)

n (x)
d
[
ψ

(−)
l (−x)

]∗

dx
− [

ψ
(−)
l (−x)

]∗ dψ(+)
n (x)

dx

]π/2

−π/2

. (18)

Note that even if the wavefunctions vanish at the boundaries, their derivatives need not, so
the expression on the right-hand side need not be zero as in the case of other PT -symmetric
potentials. Substituting the expressions for the wavefunctions and the energy eigenvalues and
taking the limits x → ±π

2 (including also the application of the l’Hospital rule) we obtain the
expression

I
(+−)
nl =

∫ π
2

− π
2

ψ(+)
n (x)

[
ψ

(−)
l (−x)

]∗
dx = 2D(+)

n

[
D

(−)
l

]∗

(n + l + 1)(n − l + 2αR)

×
[
(−1)lα

(
n + α

n

) (
l − α

l

)
+ (−1)nα∗

(
n + α∗

n

)(
l − α∗

l

)]
. (19)

This expression is not zero in general, so we conclude that the two sets of regular solutions
occurring in the limited parameter range |αR| < 1

2 do not form PT -orthogonal sets. We note
that an alternative equation can also be derived for the integral (19) by substituting directly
the expression for the wavefunctions ψ(+)

n (x) and ψ
(−)
l (x) in (8). Then a formula resembling

(13) is obtained:

I
(+−)
nl = 2D(+)

n

[
D

(−)
l

]∗
(−1)n+l

×
n∑

m=0

(−1)m
(

n + α

m

) (
n + α∗

n − m

) l∑
i=0

(−1)i
(

l − α∗

i

)(
l − α

l − i

)

× (n − m + i)!(l − i + m)!

(n + l + 1)!
. (20)

Although the exact proof of the equivalence of (20) and (19) is not obvious, they lead to the
same results for the first few values of n and l. Note that I

(+−)
nl 
= I

(+−)
ln .

It is notable that a similar situation occurs in real potentials with weakly attractive γ r−2-
type singularity (i.e. for − 1

4 < γ < 0): then both solutions are normalizable; furthermore, they
even vanish at the singularity [12]. As has been mentioned earlier, in this case the less singular
solution is kept as the physical one, which is also the option supported by the theory of the self-
adjoint extension of operators [12]. Although the concept of a physically admissible state is
less well defined in the case of PT -symmetric potentials, similar to the Hermitian problems,
it would be reasonable to consider only one of the normalizable solutions as the physical
one. The question whether this choice could be justified by more well-founded arguments,
such as generalizing the concept of self-adjoint extension of Hamiltonians to PT -symmetric
(complex) potentials is beyond the scope of the present work.

Finally, let us investigate the transitional situation with αR = ± 1
2 . This situation is similar

to the case of |αR| > 1
2 in that only one of the solutions can be accepted as physical: although
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the other one is not infinite at the boundaries, rather it takes on the finite value there and thus
still cannot be accepted. The situation is similar to the real infinite square well (corresponding
to α = β = ± 1

2 ): the solutions with α = β = 1
2 vanish at the boundaries and thus are physical,

while those with α = β = − 1
2 are normalizable and finite at the boundaries (e.g. the constant

function at n = 0), but cannot be considered physical.

2.2. Solutions with complex energy: β = −α∗

If the β = −α∗ choice is made, the energy eigenvalues (5) become complex; furthermore,
the energies belonging to the two solutions (3) and (4) form complex conjugate pairs. It is
thus tempting to interpret this situation as the Scarf I potential with spontaneously broken
PT -symmetry. Before inspecting this possibility, let us first discuss whether the boundary
conditions allow physically admissible solutions in this case.

It turns out that for |αR| > 1
2 both solutions vanish at one boundary, but become singular

at the other, so they cannot be considered physically acceptable. For |αR| = 1
2 the singularity

vanishes; however, the solution still takes on the finite value at the boundary, so it remains
physically unacceptable. It is known that the two solutions cease to be PT -symmetric in these
cases; rather they are connected by the PT operator, and this explains why they have different
behaviour at the two boundaries, in contrast with the solutions in the case with unbroken
PT -symmetry.

The only situation when both solutions vanish at both boundaries occurs for − 1
2 < αR <

1
2 , which is also the domain where there were two vanishing solutions in the case of unbroken
PT -symmetry. In this case the two solutions can be written in terms of Jacobi polynomials.
It is notable that the energies associated with these two solutions, E(±)

n = (
n + 1

2 ± iαI

)2
, do

not depend on the crucial αR parameter.
Let us now investigate the transition between the domains of real and complex energy

eigenvalues, i.e. the situations with β = α∗ and β = −α∗. The transition clearly has to go
through the critical point α = β = 0, which corresponds to the real, symmetric and singular
potential V (x) = − 1

4 cos−2 x. This potential has transitional-type attractive singularity at
both boundaries with V (x) ∼ − 1

4 r−2
(
r = π

2 ± x
)
, which is considered as the entrance to

the case of the particle falling into the centre of attraction [12]. This scenario is in obvious
contrast with the smooth transition observed in other PT -symmetric potentials.

It is also remarkable that continuing the two solutions (with q = ±) to the domain of
unbroken symmetry we face with the problem discussed in subsection 2.1, i.e. that they do
not form a PT -orthogonal set. All these arguments together indicate that the spontaneous
breakdown of PT -symmetry cannot be defined in the Scarf I potential.

3. Summary and outlook

With the intention of determining the pseudo-norm of its states, we investigated the PT -
symmetric version of the Scarf I potential (1) and identified its physically admissible solutions.
This potential has

(
π
2 ∓ x

)−2
-type singularity at the boundaries x = ±π

2 (unless an imaginary
coordinate shift x → x + iε is applied), and it turned out that these singularities restrict the
admissible solutions considerably.

The Scarf I potential is PT -symmetric if either β = α∗ or β = −α∗ holds. In both
cases it is αR = Re(α) that determines whether the solutions vanish at the boundaries, or
they take on a finite or infinite value there. For |αR| � 1

2 there are no physically admissible
solutions for β = −α∗, while for β = α∗ one of them is admissible (i.e. vanishes at both



10168 G Lévai

boundaries) and it corresponds to real energy eigenvalues. This indicated that the spontaneous
breakdown of the PT -symmetry of the Scarf I potential cannot occur in this parameter range.
For − 1

2 < αR < 1
2 , in principle, there are two admissible solutions in both cases with real and

complex energies for β = α∗ and β = −α∗, respectively. However, the problems here arise
in the domain of real energies (β∗ = α), as it turned out that the two sets of wavefunctions
ψ(+)

n (x) and ψ(−)
n (x) do not form an orthogonal set with respect to the PT -inner product.

Based on the analogy with real potentials possessing attractive r−2-type singularity, it seems
reasonable to keep only one of the solutions as physical in this case. These findings together
with the fact that the transition between the domain of real and complex energies must occur
through α = β = 0, which corresponds to the singular V (x) = − 1

4 sec2 x potential, we
concluded that the spontaneous breakdown of PT -symmetry cannot be defined for the Scarf
I potential.

We calculated the pseudo-norm of the admissible solutions for the β = α∗ case and
found that it oscillates with the principal quantum number as (−1)n. This is similar to the
situation with other PT -symmetric potentials with infinite number of discrete levels, but
differs from the example of the PT -symmetric Scarf II potential, the hyperbolic analogue of
the (trigonometric) Scarf I potential.

An interesting special case of the PT -symmetric Scarf I potential occurs for α2
I = α2

R − 1
4 ,

which leads to a one-parameter PT -symmetric extension of the infinite square well:

V (x) = ±2i αR

(
α2

R − 1

4

)1/2 sin(x)

cos2(x)
. (21)

Obviously, only those solutions can be admitted that vanish at the boundaries x = ±π
2 . Since

|αR| � 1
2 has to be satisfied, similar to the general case, only one of the solutions will be

physically acceptable, and only in the case corresponding to real energy eigenvalues, i.e.
β = α∗. These results imply that similar to the general PT -symmetric Scarf I potential
the spontaneous breakdown cannot occur for the potential (21). This is in contrast with
other types of the PT -symmetric square-well potential. These include examples where the
imaginary component is an odd step function with one [4, 10, 14] or two steps [15], or a
combination of δ functions [16]. This difference might occur due to the singularity of the
imaginary potential in (21).

Finally, the analogy with real singular potentials raises the question whether there is a
way to generalize the concept of the self-adjoint extension of Hamiltonians to PT -symmetric,
and in general, pseudo-Hermitian systems. Similar to real potentials, this problem is exposed
by the handling of solutions with proper boundary conditions, and in particular, selecting the
‘physical’ one when there are several solutions that are square integrable and vanish at the
boundaries. In the real case the self-adjoint extension is implemented through a regularization
procedure [12] that selects the less singular solution. The adaptation of this method to PT -
symmetric (pseudo-Hermitian) systems would certainly be worthwhile.
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